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. The failure of PRE and POST applications of atrazine to control Palmer amaranth in recent field
studies prompted further investigation to determine whether this population had evolved resistance to
multiple herbicide sites of action, including glyphosate (Group 9), thifensulfuron (Group 2), and
atrazine (Group 5). Greenhouse and laboratory experiments were conducted to: (1) confirm the pre-
sence of resistance to glyphosate, an ALS inhibitor (thifensulfuron), and atrazine in a single Palmer
amaranth population; and (2) establish the molecular basis for resistance to these herbicide sites of
action. In the greenhouse, glyphosate + thifensulfuron + atrazine at 1.26 kg ae ha−1 + 0.0044 kg ai ha−1 +
1.12 kg ai ha−1 provided 55% control of the suspected multiply resistant (MR) Palmer
amaranth population and 93% control of the known susceptible population (S). The decreased sensi-
tivity of the MR population compared with the S population at labeled use rates of these herbicides
indicated that this population was likely resistant to three different herbicide site of action groups. The
RF values for POST applications of glyphosate, thifensulfuron, and atrazine were 12.2, 42.9, and
9.3 times, respectively, for the MR Palmer amaranth population relative to the S population. The RF
value for atrazine PRE for the MR population was 112.2 times. Laboratory experiments confirmed
that the mechanisms for resistance to ALS-inhibiting herbicides and glyphosate in the MR Palmer
amaranth population were target-site based, via amino acid substitution and amplified EPSPS copy
number, respectively. There was a Pro to Leu substitution at site 197 in the ALS inhibitor–resistant
plants, and there was a greater than 50-fold increase in EPSPS copy number in the glyphosate-
resistant plants. There were no nucleotide changes in the psbA gene; therefore, atrazine resistance in
this population was not target-site mediated. The evolution of this multiple herbicide-resistant Palmer
amaranth population poses significant management challenges to Michigan farmers.
Nomenclature: Atrazine; glyphosate; thifensulfuron; Palmer amaranth; Amaranthus palmeri S. Wats.
Key words: Acetolactate synthase, gene amplification, mechanism of resistance, molecular analysis,
resistance factor, three-way resistance.

Palmer amaranth is a C4 Sonoran Desert annual
indigenous to the southwestern United States and
northern Mexico and the most successful Amaranthus
species to establish itself as a weedy species in agroe-
cosystems (Ehleringer 1983; Sauer 1957). Within
6 yr of being identified in South Carolina in 1989,
Palmer amaranth became the most problematic weed
in cotton (Gossypium hirsutum L.) in both North
and South Carolina (Webster and Coble 1997). By
2009 Palmer amaranth was ranked as one of the top
10 most troublesome weeds in corn (Zea mays L.),
soybean [Glycine max (L.) Merr.], and cotton in
several states of the southeastern United States

(Webster and Nichols 2012). The evolution of
herbicide resistance likely contributed to the spread
and success of Palmer amaranth as a weedy species
throughout most of the southern and Great Plains
regions of the United States (Gossett et al. 1992;
Horak and Peterson 1995). While Palmer amaranth
remains a major problem in those regions, it has
recently spread into the Midwest (Sellers et al. 2003)
and was first identified in Michigan in 2010
(Sprague 2011).

Palmer amaranth’s propensity to evolve resistance
to different herbicides has perpetuated it as a pro-
blem weed. Herbicide resistance in Palmer amaranth
is not new. The first reported case of herbicide
resistance in Palmer amaranth was identified in
South Carolina in 1989 (Gossett et al. 1992).
Populations from two South Carolina counties
evolved resistance to trifluralin, a dinitroaniline
(Group 3) herbicide. These populations had varying
levels of resistance to five other dinitroaniline
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herbicides. By 1993 atrazine (Group 5) resistance
was reported in a Texas population of Palmer
amaranth (Heap 2016), but triazine-resistant
populations have been reported in only three other
states since then. The inability of triazine-resistant
Palmer amaranth to establish and become
widespread may be due to reproductive fitness
penalties often associated with triazine resistance in
other Amaranthus species (Sibony and Rubin 2003;
Soltani et al. 2008).

As Palmer amaranth expanded north in the mid-
1990s, it rapidly developed resistance to the widely
used acetolactate synthase (ALS)-inhibiting herbi-
cides (Group 2), with resistant populations found in
several states (Heap 2016; Horak and Peterson 1995).
In addition, the rapid adoption of glyphosate-resistant
crops led to the abandonment of PRE herbicides and
sole reliance on multiple glyphosate (Group 9)
applications, leading to the evolution of glyphosate-
resistant biotypes (Owen 2008; Shaner 2000; Vencill
et al. 2012; Young 2006). The first case of glyphosate-
resistant Palmer amaranth was reported in Georgia in
2005 (Culpepper et al. 2006). This population
survived applications of glyphosate in the field at
12 times (10 kg ha−1) the normal use rate.

In addition to its evolution of resistance to a
single herbicide site of action, Palmer amaranth has
now developed resistance to multiple herbicide
sites of action. One of the most prevalent instances
of multiple resistance in populations of Palmer
amaranth is resistance to glyphosate and ALS-
inhibiting herbicides. Populations of Palmer amar-
anth resistant to both glyphosate and ALS inhibitors
have been identified in nine states, including
Georgia, Mississippi, Tennessee, South Carolina,
Arizona, Illinois, Florida, Delaware, and Michigan
(Heap 2016; Nandula et al. 2012; Sosnoskie et al.
2011). Other cases of multiple resistance reported
in Palmer amaranth are: protoporphyrinogen
oxidase (PPO) inhibitors (Group 14) + glyphosate (IL,
TN), atrazine + 4-hydroxyphenylpyruvate dioxygenase
(HPPD)-inhibiting herbicides (Group 27) (NE),
atrazine + glyphosate (NE), PPO inhibitors +ALS
inhibitors (AR), ALS inhibitors + atrazine +HPPD-
inhibitors (KS), and ALS-inhibitors + atrazine +
glyphosate (GA) (Heap 2016; Jhala et al. 2014; Salas
et al. 2016). The evolution of resistance to multiple
herbicide sites of action drastically limits the options
for Palmer amaranth control.

The primary mechanisms by which weeds develop
resistance to herbicides are categorized into five
mechanisms: altered target site, metabolism based,
reduced absorption/translocation, sequestration into

vacuoles, and gene amplification (Heap 2014).
Altered target-site resistance is the most common
mechanism of resistance for various herbicides in
several weed species. In Palmer amaranth and other
Amaranthus spp., the primary mechanism for
resistance to ALS-inhibiting herbicides is an altered
target site via amino acid substitution within the
ALS enzyme (Foes et al. 1998; Franssen et al. 2001).
Betha et al. (2015) reported that ALS resistance in a
Kansas population of Palmer amaranth was attrib-
uted to a proline to serine change at site 197.
An altered target site, due to an amino acid sub-
stitution of glycine for serine at position 264 of the
D1 protein, has been reported to be the primary
mechanism for atrazine resistance in smooth
pigweed (Amaranthus hybridus L.), common water-
hemp (Amaranthus rudis Sauer), kochia [Kochia
scoparia (L.) Schrad.], and Powell amaranth
(Amaranthus powellii S. Wats) (Diebold et al. 2003;
Foes et al. 1998, 1999; Maertens et al. 2004).
However, non–target site based triazine resistance
has been reported for populations of tall waterhemp
[Amaranthus tuberculatus (Moq.) Sauer] and
velvetleaf (Abutilon theophrasti Medik.) (Anderson
and Gronwald 1991; Patzoldt et al. 2003). To
date, the only identified mechanism of glyphosate
resistance in Palmer amaranth is the overproduction
of the target enzyme 5-enolpyruvlshikimate-
3-phosphate synthase (EPSPS) due to gene
amplification (Chandi et al. 2013; Gaines et al.
2010; Mohseni-Moghadam et al. 2013; Ribeiro
2013). This means that at current label rates,
glyphosate cannot saturate the system and stop
normal enzyme function, resulting in plant survival.

The failure of atrazine to control a newly identi-
fied population of Palmer amaranth in Michigan
that was suspected to be resistant to glyphosate and
ALS-inhibiting herbicides in field experiments in
2013 led to the following research objectives:
(1) confirm the presence of resistance to glyphosate,
an ALS inhibitor (thifensulfuron), and atrazine in a
single Palmer amaranth population; and (2) establish
the molecular basis for resistance to these herbicide
sites of action.

Materials and Methods

Seed Collection and Preparation. In fall of 2013,
seed heads of the suspected multiply resistant
(MR) Palmer amaranth treated with either 1.12 or
2.24 kg ha−1 of atrazine were harvested from field
research plots in Barry County, MI (42.702467°N,
85.524992°W) and threshed. Since Palmer amaranth

328 • Weed Science 65, May–June 2017

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/wsc.2017.2
https:/www.cambridge.org/core


is not native to Michigan, seed for the known
susceptible (S) population was obtained from Larry
Steckel (University of Tennessee). Seed from both
populations were treated with a 50% sulfuric acid and
water solution for 4min, rinsed, and then exposed to
gibberellic acid at a concentration of 0.15 g L−1 of
water for 6 h to enhance germination.

Initial Screen for Three-Way Resistance. Fifteen
seeds of the MR and S Palmer amaranth populations
were planted 0.75-cm deep in separate 10 × 10 cm
pots filled with potting media (Suremix Perlite,
Michigan Grower Products, Galesburg, MI). Seed-
lings were grown in the greenhouse at 25± 5C, and
sunlight was supplemented to provide a total midday
light intensity of 1,000 µmol m−2 s−1 photosynthetic
photon flux at plant height in a 16-h day. After
emergence, Palmer amaranth was thinned to 1 plant
pot−1. Plants were watered and fertilized as needed
to promote optimum plant growth. When plants
were approximately 10-cm tall (6- to 8-leaf stage), a
mixture of glyphosate (Roundup PowerMAX®,
Monsanto, St. Louis, MO) + thifensulfuron
(Harmony®, DuPont Crop Protection, Wilmington,
DE) + atrazine (AAtrex® 4L, Syngenta, Greensboro,
NC) was applied at 1.26 + 0.0044 + 1.12 kg ai ha−1

with a single-nozzle (8001E, TeeJet Technologies,
Wheaton, IL) track sprayer calibrated to deliver 187 L
ha−1 at 193 kPa of pressure. These rates represented 1
times the field use rates for these herbicides. Spray-
grade ammonium sulfate (AMS) (Actamaster®,
Loveland Products, Loveland, CO) at 2% w/w and
1% v/v of crop oil concentrate (COC) (Herbimax®,
Loveland Products, Loveland, CO) were added to this
treatment. Palmer amaranth control was evaluated 14 d
after treatment (DAT) on a scale of 0 to 100, with
0 indicating no Palmer amaranth control and 100
indicating plant death. Aboveground biomass was
harvested 14 DAT and dried at 60 C for 7 d and
weighed.

Dose–Response Experiments
POST Herbicides. Palmer amaranth planting,
greenhouse growing conditions, and herbicide
application for this experiment were the same as
described earlier. Herbicide applications of the
isopropylamine salt of glyphosate (Buccaneer™,
Tenkoz, Alpharetta, GA), thifensulfuron, and atra-
zine were made independently when Palmer amar-
anth averaged 10 cm in height. Application rates
ranged from 1/32 to 2X the labeled rate for the
S population and 1/4 to 32X the labeled rate for the
suspected resistant MR population; nontreated

control treatments were included for each population.
The 1X rates for each herbicide were: 1.26 kg ha−1

of glyphosate, 0.0044 kg ha−1 of thifensulfuron, and
1.12 kg ha−1 of atrazine. Herbicide rates were
selected to provide a range of responses from no
control to plant death. All atrazine treatments con-
tained 1% v/v COC. Glyphosate and thifensulfuron
treatments each included non-ionic surfactant (NIS)
at 0.5% v/v and AMS at 2% w/w. Palmer amaranth
control was evaluated 14 DAT on a scale of 0 to
100. Aboveground biomass was harvested 14 DAT
and dried at 60 C for 7 d and weighed.

PRE Atrazine. Twenty-five seeds of the MR and
S Palmer amaranth populations were planted at a
depth of 0.75 cm in separate 10 × 10 cm pots filled
with a steam-sterilized Capac loam (fine-loamy,
mixed, active, mesic Aquic Glossudalf) soil com-
posed of 78.1%, 13.3%, and 8.6% sand, silt, and
clay, respectively, with a pH of 7.6 and 2.7%
organic matter. Prior to planting and herbicide
application, pots were watered to near field capacity.
Atrazine was applied to the soil surface at rates
ranging from 1/8 to 8X for the S population and 1/2
to 32X for the MR population; nontreated control
treatments were included for each population. The
1X use rate for atrazine applied PRE was equal to
1.12 kg ha−1. After herbicide application, pots were
placed in the greenhouse (see greenhouse conditions
listed earlier), and the soil surface for each pot
was watered uniformly to incorporate the herbicide.
To minimize herbicide leaching, all subsequent
watering was done through subirrigation. A single
application of 50ml of a 20-20-20 (200ppm N) (Peters
Professional®, Everris, Geldermaslen, Netherlands)
fertilizer solution was applied as a drench to the soil
surface 14 DAT to maintain normal plant growth.
Emergence counts were taken weekly, and aboveground
biomass was harvested at 28 DAT. Biomass was
dried at 60 C for 7 d and weighed.

Statistical Analysis. Each experiment was arranged
in a randomized complete block design with six
(initial screen and POST experiment) or seven (PRE
experiment) replications and conducted twice. Dry
weights from each experiment were converted to a
percent of the nontreated control for each popula-
tion (MR and S). Dry-weight data were used to
determine the rate required to achieve a 50% growth
reduction (GR50) for each herbicide. Data for each
experiment were analyzed using nonlinear regression
in SigmaPlot v. 11.0 (Systat Software, San Jose,
CA). The herbicide dose required to reduce Palmer
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amaranth biomass (growth) by 50% (GR50) was
then calculated for each population–herbicide
combination using the log-logistic model (Burgos
et al. 2013) (Equation 1):

y= c +
d�c

1 + x
GR50

� �b (1)

where d equals the upper limit, c is the lower limit,
and b is the relative slope around the GR50. Devia-
tions from the model are indicated by R2 values, and
standard errors for the GR50 values are presented.
Resistance factors (RFs) were calculated for each
population–herbicide combination (Equation 2).

Resistance Factor. Greenhouse experiments were
conducted to determine the RF (Equation 2) of the
suspected MR Michigan Palmer amaranth popula-
tion to POST applications of glyphosate, thi-
fensulfuron, and atrazine, and to PRE applications
of atrazine. The suspected MR Palmer amaranth
population was compared with a known S popula-
tion to determine the dose required for 50% growth
reduction (GR50).

RF=
GR50resistant

GR50susceptible
(2)

Molecular Basis for Resistance
Plant Material and DNA Extraction. Suspected MR
and S Palmer amaranth plants were grown as
described earlier for the POST experiment. When
plants from the MR population reached 10 cm in
height, atrazine was applied at 18 kg ha−1 + 1% v/v
COC, or 16 times the normal use rate to select for
atrazine-resistant plants. Glyphosate and thi-
fensulfuron were not applied to these plants, since
there was less variability in the whole-plant responses
to these herbicides. Young newly emerging leaf tis-
sue (approximately 150mg) was harvested 21 d after
atrazine was applied to the MR population from
four individual plants from the MR and S popula-
tions. Harvested leaf tissue was immediately frozen
in liquid nitrogen and stored at −20 C until
extraction for genomic DNA (gDNA). Palmer
amaranth gDNA was extracted for each individual
plant using the Qiagen DNeasy Mini Kit (Qiagen,
Valencia, CA) and quantified using a NanoDrop™
spectrometer (NanoDrop™ 2000c, Thermo Fisher
Scientific, Waltham, MA).

ALS and psbA Gene Isolation and Sequencing. The
ALS and psbA genes were isolated and sequenced to

determine whether ALS and atrazine resistance in
the MR Palmer amaranth population was conferred
through nucleotide changes leading to amino acid
substitution at the target site.

Primer selection and methods for polymerase
chain reaction (PCR) and sequencing were based on
previous research conducted by Betha et al. (2015),
Mengistu et al. (2005), and Whaley et al. (2007).
Primers for amplifying an approximately 2-kb
section of the ALS gene (Table 1) were designed
by Whaley et al. (2007) and based on the
Amaranthus spp. sequence (GenBank Accession
U55852). Primers used for amplification of the
ALS gene in Palmer amaranth are listed in Table 1 as
ALS forward 1 and ALS reverse 1. Amplification of a
576-bp region of the psbA gene was done with
primers (Table 1) designed by Mengistu et al.
(2005). Primers used for amplification of the psbA
gene are listed in Table 1 as psbA forward 1 and
psbA reverse 1. Each PCR reaction for both ALS and
psbA amplification contained 2 µl of gDNA, 10 µM
each of forward and reverse primers, 10mM
deoxynucleotide triphosphates (DNTPs), 0.5 µl
Phusion® high-fidelity DNA polymerase (New
England Biolabs, Ipswich, MA), 10 µl of supplied
5 × buffer, and nuclease-free water to a final volume
of 50 µl. Two separate thermoprofiles were designed
for the amplification of the ALS and psbA genes.
Reactions for the ALS genes were subjected to 30 s
at 98 C, 34 cycles of 10 s at 98 C, 30 s at 60 C, 90 s
at 72 C, and a final 10min at 72 C. Reactions for
the psbA genes were subjected to 30 s at 98 C, 34
cycles of 10 s at 98 C, 30 s at 55 C, 30 s at 72 C,
and a final 10 min at 72 C. PCR products were
quantified using gel electrophoresis. Prior to sequen-
cing, PCR products were purified using the Wizard®

Table 1. Oligonucleotide primers used for PCR, gene sequencing,
and qPCR of the ALS, psbA, and EPSPS genes.

Primer Sequence

ALS forward 1 5′TCCTCGCCGCCCTCTTCAAATC
ALS forward 2 5′GTCCGGGTGCTACTAATCTTGTTT
ALS forward 3 5′TTGCTAGTACTTTAATGGGGTTGG
ALS forward 4 5′GCTGCTGAAGGCTACGCT
ALS reverse 1 5′CAGCTAAACGAGAGAACGGCCAG
ALS reverse 2 5′GCATCTGGTCGAGCAACAGCAG
ALS reverse 3 5′GTCACTCGATCATCAAACCTAACC
ALS reverse 4 5′GCGGGACTGAGTCAAGAAGTG
psbA forward 1 5′CTCCTGTTGCAGCTGCTACT
psbA reverse 1 5′GAGGGAAGTTGTGAGC
EPSPS forward 1 5′ATGTTGGACGCTCTCAGAACTCT

TGGT
EPSPS reverse 1 5′TGAATTTCCTCCAGCAACGGCAA
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SV gel and PCR clean-up kit (Promega, Madison,
WI), and concentrations were measured using a
NanoDrop™ spectrometer. Eight and four separate
sequencing reactions were conducted for the ALS
and psbA genes, respectively, for each of the four
biological replicates for the MR and S Palmer
amaranth populations. To ensure complete coverage
and overlap of the 2-kb ALS region, ALS forward
and reverse primers 1 to 3 were used (Table 1).
Since the psbA region was only 576 bp, only a single
set of forward and reverse primers was necessary
(Table 1). Sanger sequencing (Applied Biosystems™
3730XL, Thermo Fisher Scientific, Waltham, MA)
reactions contained 1 µl of 100 ng purified PCR
product, 3 µl of forward or reverse primers, and
biologically pure water brought up to a final volume
of 12 µl. Sequences were aligned and compared
using Sequencher™ v. 5.4.1 software (Gene Codes,
Ann Arbor, MI). Additional sequence alignment was
done with clustalW analysis, and peptide sequences
and numbering were obtained with translation tools
available through ExPASy (ExPASy: SIB bioinfor-
matics resource portal, http://www.expasy.org).

EPSPS Copy Number. Real-time quantitative PCR
(qPCR) was used to determine whether glyphosate
resistance in the MR Palmer amaranth population
was due to amplification of the EPSPS gene.
Quantification of the EPSPS gene was determined
by comparing the relative copy number of the
EPSPS gene with the ALS gene. The primers used in
the qPCR assay were identical to the ones described
by Gaines et al. (2010) and Giacomini et al. (2014).
These primers are listed as ALS forward and reverse
4 and EPSPS forward and reverse 1 in Table 1.
Dilution series of the primers were not conducted,
since previous research has shown high efficiencies
with these primer sets (Gaines et al. 2010; Giacomini
et al. 2014).

The reactions for qPCR were set up with 3 µl of
gDNA (2 ng µl−1) from the two Palmer amaranth
populations, 2 × SYBR® Green Master Mix (Applied
Biosystems™, Thermo Fisher Scientific), 10 µM of
each forward and reverse primer, and distilled water
to bring the final reaction volume to 15 µl. The
negative controls contained 7.5 µl of the 2 × SYBR®

Green Master Mix and 7.5 µl of distilled water.
All reactions for the four biological replicates of the
MR and S populations were run in triplicate
with the following thermoprofile on a QuantStudio™
7 Flex real-time PCR system (Applied Biosystems™,
Thermo Fisher Scientific): 10min at 95 C, 40 cycles

at 95 C for 30 s, and 1min at 60 C, followed by melt
curve analysis to check for primer dimers.

Threshold cycles (Ct) were calculated using
QuantStudio™ real-time PCR software v. 1.2
(Applied Biosystems™, Thermo Fisher Scientific).
Relative copy number of the EPSPS gene compared
with the ALS gene was calculated using a modifica-
tion of the 2−ΔΔCt method (Gaines et al 2010; Livak
and Schmittgen 2001). Estimated EPSPS copy
number was determined by finding the change in
Ct values (Equation 3), and calculating the 2ΔCt.

ΔCt= C tALS�C tEPSPSð Þ (3)

Results and Discussion

Initial Screen for Three-Way Resistance. The
initial screen showed that the combination of
glyphosate + thifensulfuron + atrazine failed to con-
trol the MR population of Palmer amaranth.
Previous research has shown complete control of
other Palmer amaranth populations with these her-
bicides applied alone, at or below the rates used in
this experiment (Chandi et al. 2013; Horak and
Peterson 1995; Norsworthy et al. 2008). Control
with all three herbicides applied in combination was
55% and 93% at 14 DAT for the MR and S
populations, respectively. Control of all of the S
population replications was ≥90%, while 90%
control was never achieved with any MR replicates.
Biomass reduction from the combination was 7.15X
greater in the S population compared with the MR
population. The results from this initial screen in the
greenhouse confirm preliminary observations from
previous field trials of a lack of sensitivity in the MR
population to glyphosate, ALS inhibitors, and atra-
zine. This multiple resistance of glyphosate, ALS
inhibitors, and atrazine in Palmer amaranth is not
widespread and has only been reported in one other
population in Georgia (Heap 2016). To date, there
has been little published on the Georgia population.

Resistance Factor
ALS Resistance. Thifensulfuron applied at half
(0.002 kg ha−1) of the normal field use rate or more
provided near-complete control of the S Palmer
amaranth population (Figure 1). However, there
were some plants that survived the higher applica-
tion rates, indicating that this population may not
be completely susceptible to thifensulfuron. Even
with this minor variability in control of the sus-
ceptible population, the dose of thifensulfuron
required to reduce biomass of the S population 50%
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was 0.00014 kg ha−1 (Table 2). The GR50 value for
the suspected ALS-resistant population (MR) was
0.006 kg ha−1 of thifensulfuron, indicating the RF
for the MR population to be 42.9X (Table 2). The
level of resistance in this population is lower than
what has been previously reported for other popu-
lations of ALS-resistant Palmer amaranth (Sprague
et al. 1997). The population investigated by Sprague
et al. (1997) was highly resistant to ALS-inhibiting
herbicides, with an RF> 3,700 for thifensulfuron.
There have been other reports of varying levels of
ALS resistance between populations. For example,
suspected ALS-resistant populations of Palmer
amaranth from Mississippi and Georgia treated with

pyrithiobac had RF values of 8 and 303X, respec-
tively (Nandula et al. 2012; Sosnoskie et al. 2011).
The difference in resistance levels may be attributed
to the sensitivity of the S population to ALS-
inhibiting herbicides used in the screening process or
differences in the mechanism of resistance. Even
though the MR population demonstrates a lower RF
than has been previously reported, plant survival was
observed when thifensulfuron was applied at 32X
(0.14 kg ai ha−1) the normal use rate, with biomass
only being reduced 70% at this rate (Figure 1).

Glyphosate Resistance. The dose–response analysis
showed that the S Palmer amaranth population was
more sensitive to glyphosate compared with the MR
population (Figure 2). The 1X (1.26 kg ha−1) rate of
glyphosate completely controlled the S population,
while the 1X rate of glyphosate only reduced Palmer
amaranth biomass 10% for the MR population.
Glyphosate applied at 16X (13.5 kg ha−1) the labeled
rate reduced Palmer amaranth biomass 95% for the
MR population. The GR50 values were 0.094 and
1.14 kg ha−1 for the S and MR populations,
respectively (Table 2). The RF value of 12X for the
MR population falls within the range of the RF
values of 5 to 115X that have been previously
reported for other populations of glyphosate-
resistant Palmer amaranth (Culpepper et al. 2006;
Norsworthy et al. 2008; Steckel et al. 2008). These
results demonstrate that the MR population is
resistant to both glyphosate and the ALS-inhibiting
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Figure 1. Biomass growth reduction of Palmer amaranth
populations in response to applications of thifensulfuron. Fitted
lines were calculated with the three-parameter log-logistic
model: S (susceptible), y = 90.5/(x/0.14)1.08, R2 = 0.79; MR
(suspected multiple resistance), y = 84.8/(x/5.96)1.26,
R2 = 0.77. Means for the S population are represented by filled
circles and means for the MR population are represented by filled
squares.

Table 2. GR50 values, standard errors (± SE), and resistance
factors (RF) for suspected resistant (MR) and susceptible (S)
Palmer amaranth populations following PRE and POST appli-
cations of atrazine, glyphosate, and thifensulfuron.a

Herbicide Population GR50
a ± SE RFb

kg ai ha−1

Atrazine (PRE) MR 3.927 7.99 112.2
S 0.035 0.02

Atrazine (POST) MR 1.206 0.2181 9.3
S 0.13 0.0235

Glyphosate MR 1.143 0.79074 12.2
S 0.094 0.00696

Thifensulfuron MR 0.006 0.00093 42.9
S 0.00014 0.00003

a GR50, required dose to reduce Palmer amaranth dry biomass 50%.
b F = GR50 ðMRÞ

GR50 ðSÞ :

Glyphosate rate (kg ae ha-1)

0 5 10 15 20 25

G
ro

w
th

 r
ed

uc
tio

n 
(%

)

0

20

40

60

80

100

S 
MR

Figure 2. Biomass growth reduction of Palmer amaranth
populations in response to applications of glyphosate. Fitted
lines were calculated with the three-parameter log-logistic model: S
(susceptible), y = 90.5/(x/0.14)1.08, R2 = 0.79; MR (suspected
multiple resistance), y = 84.8/(x/5.96)1.26, R2 = 0.77. Means for
the S population are represented by filled circles and means for the
MR population are represented by filled squares.
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herbicide, thifensulfuron. The first documented
populations of Palmer amaranth resistant to both
glyphosate and ALS inhibitors occurred in Georgia
and Mississippi in 2008 (Nandula et al. 2012;
Sosnoskie et al. 2011). Since then, several other
Palmer amaranth populations have been docu-
mented as having multiple resistance to glyphosate
and ALS-inhibiting herbicides.

Atrazine Resistance POST. Atrazine applied POST
at 1.12 kg ha−1 (1X) reduced Palmer amaranth
biomass 89% for the S population (Figure 3). This
dose falls in the range of rates that Jhala et al. (2014)
reported for the effective dose to reduce Palmer
amaranth biomass 90% (ED90) in two atrazine-
sensitive Palmer amaranth populations. To reduce
Palmer amaranth biomass 90% for the MR popu-
lation, atrazine needed to be applied at 32X
(35.90 kg ha−1) the normal use rate (Figure 3). The
GR50 values for the S and MR Palmer amaranth
populations were 0.13 and 1.20 kg ha−1, respec-
tively, resulting in an RF of 9X (Table 2). The RF
value for the MR population is similar to RF values
(9 to 14X) reported by Jhala et al. (2014) in a
Nebraska Palmer amaranth population resistant to
atrazine. However, the RF for atrazine in the MR
Palmer amaranth population is lower than what has
been reported previously for triazine-resistant
smooth pigweed and tall waterhemp, for which
RFs were greater than 100X (Foes et al. 1998;
Maertens et al. 2004). The mechanism for atrazine

resistance in these populations was reported as
target-site mediated. The lower RF observed in the
MR population indicates that the mechanism for
resistance in this population may not be target-site
based. Detoxification of atrazine has been reported
as the mechanism of resistance in velvetleaf, Palmer
amaranth, and common waterhemp (Amaranthus
rudis L.) (Anderson and Gronwald 1991; Betha et al.
2015; Patzoldt et al. 2003).

Atrazine Resistance PRE. In addition to the MR
population being less sensitive to atrazine applied
POST, it was also less sensitive to atrazine applied
PRE compared with the S population. The 1X
(1.12 kg ha−1) rate of atrazine reduced biomass of
the S Palmer amaranth population 98%, while 32X
(35.90 kg ha−1) the normal use rate failed to reduce
biomass in the MR population> 60% (Figure 4).
Atrazine applied PRE at 1.68 kg ha−1 has been
shown to provide> 95% control of Palmer amar-
anth 8 wk after application (Johnson et al. 2012).
PRE applications of atrazine have also failed to
control several other weed species, such as common
groundsel (Senecio vulgaris L.), common lambs-
quarters (Chenopodium album L.), hood canarygrass
(Phalaris paradoxa L.), rigid ryegrass (Lolium rigidum
Gaudin), and blackgrass (Alopecurus myosuroides
Huds.) that have evolved resistance to atrazine
applied POST (Fuerst et al. 1986; Ryan 1970;
Yaacoby et al. 1986). The GR50 values for atrazine
applied PRE for the S and MR Palmer amaranth
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Figure 3. Biomass growth reduction of Palmer amaranth
populations in response to postemergence (POST) applications
of atrazine. Fitted lines were calculated with the three-parameter
log-logistic model: S (susceptible), y = 90.5/(x/0.14)1.08, R2 = 0.79;
MR (suspected multiple resistance), y = 84.8/(x/5.96)1.26,
R2 = 0.77. Means for the S population are represented by filled
circles and means for the MR population are represented by filled
squares.
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Figure 4. Biomass growth reduction of Palmer amaranth
populations in response to PRE applications of atrazine. Fitted
lines were calculated with the three-parameter log-logistic model:
S (susceptible), y = 90.5/(x/0.14)1.08, R2 = 0.79; MR (suspected
multiple resistance), y = 84.8/(x/5.96)1.26, R2 = 0.77. Means for
the S population are represented by filled circles and means for MR
population are represented by filled squares.
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populations were 0.035 and 3.93 kg ha−1, respec-
tively (Table 2). The RF for the MR population
was 112.2X for atrazine applied PRE. This RF was
12 times greater than the RF for atrazine POST,
showing that this population has a much higher level
of resistance to PRE applications of atrazine than
when it is applied POST. A possible explanation for
the higher RF for atrazine PRE could be the rapid
detoxification of atrazine via glutathione conjugation
in the stem prior to movement into the leaves when
atrazine is absorbed by the roots. This has been
reported for velvetleaf, in which atrazine was meta-
bolized at a higher rate in stem tissue compared with
leaves. This detoxification of a photosystem II
(PSII)-inhibiting herbicide in the stem has also been
reported as an important mechanism for soybean
tolerance to metribuzin (Fedtke and Schmidt 1983;
Gronwald et al. 1989). Since atrazine needs to be
transported to the leaves for activity, detoxification
of atrazine could occur at a higher rate prior to
activity when applied PRE compared with POST.

Molecular Basis for Resistance
ALS Inhibitors. Previous research has shown that a
single nucleotide change leading to amino acid
substitution is responsible for the majority of ALS
resistance in tall waterhemp, redroot pigweed
(Amaranthus retroflexus L.), smooth pigweed, Powell
amaranth, and Palmer amaranth (Diebold et al.
2003; Foes et al. 1998; Patzoldt and Tranel 2007;
Sibony et al. 2001; Whaley et al. 2007). This, paired
with the level of resistance expressed by the MR
Palmer amaranth population, prompted molecular
analysis to establish the mechanism conferring
resistance in this population. Resistance to ALS
inhibitors in Amaranthus spp. have been well
documented. Amino acid substitutions reported to
cause resistance to the ALS inhibitors in Amaranthus
spp. have been found at six locations within the ALS
enzyme: Ala122, Pro197, Ala205, Asp376, Trp574, and
Ser653 (Ashigh et al. 2009; Heap 2016; Huang et al.
2016; McNaughton et al. 2005; Tranel and Wright
2002). All amino acid numbering was normalized to
the Arabidopsis thaliana sequence. In the MR Palmer
amaranth population, there were several nucleotide
changes at multiple locations within the ALS
enzyme. With one exception, all other polymorph-
isms were silent mutations, resulting in no amino
acid changes. In the MR population there was a
cytosine to thymine change at position 574
(Table 3). This change allowed for a Pro197Leu
amino acid substitution relative to the Arabidopsis
thaliana numbering. This mutation has not been

identified in other ALS-resistant Palmer amaranth
populations; however, the Pro197Leu substitution
was previously reported to confer resistance to
sulfonylurea herbicides (i.e., thifensulfuron) in
redroot pigweed at similar levels as those observed
here with the MR population (Heap 2016; Sibony
et al. 2001). The MR population was only screened
with thifensulfuron, a sulfonylurea herbicide, for
ALS resistance, so cross-resistance to other classes of
ALS-inhibiting herbicides was not determined.
However, the Pro197Leu substitution was reported
to cause low to high resistance in redroot pigweed
to the imidazolinone, triazolopyrimidine, and
pyrimidinylthiobenzoic acid classes of ALS-
inhibiting herbicides, in addition to the sulfony-
lurea herbicides (Sibony et al. 2001). This indicates
a strong likelihood that the MR population would
demonstrate cross-resistance to four of the five
classes of ALS-inhibiting herbicides.

Glyphosate Resistance. Weed resistance to glypho-
sate has been shown to be due to multiple
mechanisms. In populations of horseweed [Conyza
canadensis (L.) Cronq.] and rigid ryegrass, glypho-
sate resistance is conferred through reduced trans-
location and vacuole sequestration (Ge et al. 2010;
Koger and Reddy 2005; Lorraine-Colwill et al.
2002). Similar to other weeds that have evolved
resistance to ALS inhibitors, populations of goose-
grass [Eleusine indica (L.) Gaertn.], rigid ryegrass,
and Italian ryegrass [Lolium perenne L. ssp.
multiflorum (Lam.) Husnot] have expressed target-
site resistance to glyphosate with amino acid sub-
stitutions at Pro106 (Perez-Jones et al. 2007; Powles
and Preston 2006; Wakelin and Preston 2006). The
novel mechanism of resistance that has been
attributed to conferring resistance to glyphosate in
Palmer amaranth populations from Georgia, North
Carolina, and New Mexico is overproduction of the
target enzyme EPSPS due to gene amplification

Table 3. Nucleotide and amino acid polymorphisms conferring
ALS resistance in the suspected multiply resistant (MR) Michigan
population of Palmer amaranth.

Nucleotide and amino acid polymorphismsa

Population Codon 573–575 Amino acid 197

Susceptible CCC Proline
Resistant (MR) CTC Leucine

a Polymorphisms are denoted by nucleotide position within
the codon. Amino acid position numbering is normalized to
Arabidopsis thaliana.
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(Chandi et al. 2013; Gaines et al. 2010; Mohseni-
Moghadam et al. 2013; Ribeiro 2013). Since its
identification in Palmer amaranth, overproduction
of EPSPS has been documented as the mechanism
of glyphosate resistance in Italian ryegrass and
kochia (Salas et al. 2012; Wiersma et al. 2015).
Based on these previous reports and the RF for
the MR Palmer amaranth population, a molecular
analysis was conducted to determine whether gene
amplification was the mechanism of glyphosate
resistance in this population. The qPCR results
indicated that the S population had only one copy of
the EPSPS gene (Figure 5), while the number of
copies ranged from 47 to more than 100 copies
of EPSPS enzyme relative to ALS enzyme in the
MR population. The number of EPSPS copies in
the MR population fell within the range of 5 to
more than 160 genomic copies noted by Gaines
et al. (2010), who also reported that shikimate
accumulation was minimal, illustrating normal
enzyme function with 65 or more copies of EPSPS
in Palmer amaranth. Resistance to glyphosate
increases as EPSPS copy number increases; however,
only 30 to 50 copies are necessary to survive normal
field use rates of glyphosate (Gaines et al. 2011).
Fewer copies of EPSPS (10 or more) are required to
confer resistance to glyphosate in Italian ryegrass
(Salas et al. 2015). Differences in the post-
transcriptional regulation of EPSPS resulting in
differences of
protein expression in Palmer amaranth and Italian
ryegrass may lead to the differences in copy number
required to confer resistance to glyphosate (Salas
et al 2010; Vogel and Marcotte 2012). All of the

Palmer amaranth plants tested from the MR popu-
lation fell within or above the range described by
Gaines et al. (2011), with 75% of the plants having
more than 60 genomic copies of the EPSPS enzyme.
The results from the qPCR and dose–response
experiments confirmed that that MR population has
moderate to high levels of resistance to glyphosate
widely distributed within the population.

Atrazine Resistance. Target-site resistance with an
amino acid substitution of Gly for Ser at position
264 of the D1 protein, has been reported as the
primary mechanism for triazine resistance in smooth
pigweed, common waterhemp, kochia, and Powell
amaranth (Diebold et al. 2003; Foes et al. 1998,
1999; Maertens et al. 2004). This amino acid
substitution, like most target site–based resistances,
confers a high level of resistance to atrazine. For
example, this substitution was reported in an
atrazine-resistant common waterhemp population
from Illinois that had an RF of 185 times (Foes et al.
1998). There have been reports of other amino acid
substitutions at Phe211, Val219, and Ala251 con-
ferring resistance to the PSII-inhibiting herbicides
(i.e., atrazine) at a lower RF than the Gly to Ser264
substitution (Devine and Shukla 2000; Mengistu
et al. 2000). The RF values reported for these other
amino acid substitutions are similar to the one
reported here for the MR population. Molecular
analysis was conducted to determine whether an
amino acid substitution was present within the
region of the psbA gene, causing atrazine resistance
in the MR population of Palmer amaranth. Eva-
luation of the psbA gene showed no nucleotide
polymorphisms within the sequenced region. The
absence of polymorphisms and the variability in
expression of resistance indicate that the mechanism
of resistance for atrazine is most likely non–target
site based. Non–target site triazine resistance, pos-
sibly via glutathione-S-transferase conjugation, was
recently reported in a Kansas Palmer amaranth
population and in other Amaranthus spp. (Betha
et al. 2015; Ma et al. 2013).

This research confirms that a Palmer amaranth
population found in Michigan is resistant to three
different herbicide sites of action: glyphosate (Group
9); thifensulfuron, an ALS-inhibiting herbicide
(Group 2); and atrazine applied PRE and POST
(Group 5). While this three-way resistance profile
was documented in one other Palmer amaranth
population in Georgia in 2010 (Heap 2016), this is
the first report of RF values and possible mechan-
isms of resistance for this three way–resistant
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Figure 5. EPSPS copy number relative to ALS enzyme in
susceptible (S) and suspected multiply resistant (MR) populations
of Palmer amaranth. Relative copy number was determined using
real-time qPCR with methods described by Gaines et al. (2010).
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population. The addition of atrazine resistance to
the already widespread resistance to glyphosate and
ALS-inhibiting herbicides will make management
of Palmer amaranth a challenge in corn. Atrazine
applied both PRE and POST has been an effective
tool for Palmer amaranth management (Johnson
et al. 2012; Norsworthy et al. 2008; Wiggins et al.
2015). Without atrazine, glyphosate, or the ALS-
inhibiting herbicides for Palmer amaranth control,
farmers will rely heavily on HPPD-inhibiting
(Group 27) herbicides both PRE and POST, the
long-chain fatty acid inhibitors (Group 15) PRE,
glufosinate (Group 10) POST, and the plant
growth–regulating herbicides (Group 4) POST.
The sole reliance on these herbicides applied alone
is not a sustainable approach to management,
especially since there are recently documented cases
of HPPD resistance in Palmer amaranth (Heap
2016; Jhala et al. 2014) and a case of tall waterhemp
with reported resistance to five different herbicide
sites of action (Evans et al. 2015). Integrated
approaches that include crop rotation, tillage, the
use of both PRE and POST herbicide applications
with overlapping residuals, tank mixtures of herbi-
cides with multiple effective sites of action, and the
incorporation cultural practices such as the use of
cover crops will be needed to manage multiply
resistant Palmer amaranth populations.
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